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Recent developments in molecular theories and simulation of ions and polar molecules in water are reviewed.
The hydration of imidazole and imidazolium is used to exemplify the theoretical issues. The treatment of
long-ranged electrostatic interactions in simulations is discussed extensively. It is argued that the Ewald
approach is an easy way to get correct hydration free energies corresponding to thermodynamic limit from
molecular calculations. Molecular simulations with Ewald interactions and periodic boundary conditions
can also be more efficient than many common alternatives. The Ewald treatment permits a conclusive
extrapolation to infinite system size. Accurate results for well-defined models have permitted careful testing
of simple theories of electrostatic hydration free energies, such as dielectric continuum models. The picture
that emerges from such testing is that the most prominent failings of the simplest theories are associated with
solvent proton conformations that lead to non-Gaussian fluctuations of electrostatic potentials. Thus, the
most favorable cases for second-order perturbation theories are monoatomic positive ions. For polar and
anionic solutes, continuum or Gaussian theories are less accurate. The appreciation of the specific deficiencies
of those simple models have led to new concepts, multistate Gaussian and quasi-chemical theories, which
address the cases for which the simpler theories fail. It is argued that, relative to direct dielectric continuum
treatments, the quasi-chemical theories provide a better theoretical organization for the computational study
of the electronic structure of solution species.

1. Introduction in the simulation. The price to be paid for this accuracy and
efficiency is additional effort in understanding Ewald calcula-

Water, the most commonly encountered liquid, exerts both (i5s from a physical viewpoint and in implementing Ewald
chemical and physical influences on aqueous molecular Pro-interactions its equivalent$;” and alternative: 10

cesses. Hydration effects are often divided into hydrophobic . o . . . .
and hydrophilic categories. Hydrophilic solutes are typically The physical issues _mot|va_1t|ng S|mulat|on calculations of t.h's
ionic or polar species and may participate in chemical interac- t);p_e r?"o"’g arcl)und ?'elezftr;c _contmuulm mdodels of hy?ranon
tions with the water solvent. Because of the long range of the ot lonic and poiar so utes. 1t IS natural and common or a
simple approximation to provide a conceptual baseline for

electrostatic interactions and their strength relativekgd, o h ical | h
hydrophilic hydration presents distinctive conceptual and practi- ¢ONSidering more accurate theoretical results. But the converse

cal issues for understanding and predicting the influence of comparison is foremost for t_his work. The theoretical e_ff(_)rts
hydration on chemical and biochemical events in water. over recent years have provided sharper tests of the validity of

A principal and long-standing technical issue is the treatment Lhn? I(; %’;'|nu£rea§przogf:n;2af? e;neerneg thib?z::ﬁzggn:l?sce?]?
of infinitely long-ranged interactions in the context of a sample P y Y oy ’

of finite size! Recent work has helped to resolve this problem. yvork has qlarlfled that the dlglectrlc quels are simple
One algorithmic approach to treatment of long-ranged interac- |mplementathns of thermogjynaml(_: perturbation theory through
tions is the use of Ewald interactions within the conventional second order in electrostatic coupling parameters such as solute

periodic boundary conditiors.We argue here thahe Ewald charges?~14 dielectric models can also be considered a simple

approach is an easy way to get correct hydration free energies implementation of an ansatz that electrostatic potential fluctua-
from molecular calculations, that is, to achieve well-character- tions are distributed according to a Gaussian probability

ized results appropriate to the thermodynamic limit in which density!® or they can be considered a simplified linear response
the system size tends to infinity for given densities and theory:®®

temperature. In addition, molecular simulations with Ewald  Second-order perturbation theory was found to be satisfactory
interactions and periodic boundary conditions can also be morefor some solutes such as alkali ioHshut unsatisfactory for
efficient than rougher approximations that are often employed watef1° and anions? In the latter cases, of course, an a
to compute hydration free energies for molecularly well-defined posteriori adjustment of cavity radii could still produce the
problems. We anticipate results below by noting that we obtain correct hydration free energiés.However, the more ambitious
accurate, thermodynamic limiting results for the hydration free molecular theory ties the values of radii parameters to molecular
energy of imidazole with as few as 16 water molecules included properties that depend on the thermodynamic state of the system
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(temperature, pressure, and composition of the solvent) and to
nonelectrostatic characteristics of the sottgelvent interac-
tions. The radii are not separately adjustable when viewed from
that deeper level of molecular theory. However, the radii can
be well-defined and areot properties of the solutes alone but
incorporate information about the solvent and thermodynamic
state.

For water as a solvent, the case of exclusive concern here,
the most promlnent failings of second-order perturbatlon theory Figure 1. Protonation equilibrium between imidazole and imidazolium.
are associated with solvent proton conformations that lead to
non-Gaussian fluctuations of electrostatic potenfi&f3. Thus,
the most favorable cases for the second-order perturbation

theories are monovalent atomic posmvg ions. In such Cases,in these problems has focused on predicting-abiase equilibria
oxygen-hydrogen bonds of water are oriented away from the ¢ pinchemical relevanc®:3133 We will calculate the charging

ion. Neqtral, polar molecules that may fOFm specific hydfog?” free energies of the protonated imidazolium and the neutral,
bonds with the solvent are more challenging for these theorles,polar imidazole (Figure 1). Imidazole in water provides a rich

thOUQ,h the hydration .free' energies S,OUth are smaller N example: the polar imidazole molecule can be protonated at
magnitude than for typical ions. Negative molecular ions are o N position to form a molecular cation, imidazolium. This

expected to offer further complications because now the ,qionation reaction has &gof about 732 It provides a basis
problematic proton interactions with the solute will be strong. ¢, pK, calculations of ionizable residues of proteffist
However, we have less experience with realistic negative ions Imidazole is the building block of histidine, one of the most

partly because the molecular models used for simulation are 5qtjye amino acids enzymatically and ubiquitous in the active

less well-developed than for other cases. , sites of enzymes that operate at room temperature and neutral
The appreciation of the different possibilities for fluctuations 433

has led to new theories of electrostatic hydration free enetyjies.
These theories analyze electrostatic distributions more broadly,
still using Gaussian models at crucial steps, but now several
Gaussian distributions are derived from an analysis of the first-
shell environment of the solute. For the important case of
hydration of a water molecule, this extension repairs the
breakdown of a single Gaussian theory. Negative ions can still
be problematic, but the multiple Gaussian approach has also
motivated development of quasi-chemical thedfiebat are
based, in principle, on full information about the thermal motion
of the first hydration shell. Though experience with the quasi-
chemical theories is limite¢f, we anticipate that they should
provide better descriptions of the hydration free energies, in
addition to providing a reasonable pathway to carry out solution
phase electronic structure calculations on hydrated negative
ions—calculations that would be difficult particularly in the
absence of hydration effects.

In the following section, we will first introduce the model
solute imidazole, which was chosen as a molecular solute to
exemplify, combine, and extend aspects of ionic and polar
solutes studied previoushy. 142124 Results for imidazole and
imidazolium will be used throughout the manuscript to illustrate
the theoretical issues. We will discuss the Ewald treatment of
electrostatic interactions, motivating it in various ways. Sub-
sequently, finite-size effects will be studied. The correction for
the typically large finite-size effects is essential for accurate
calculations of solvation free energies of polar and charged
solutes. We distinguish between electrostatic finite-size effects
that are independent of the thermodynamic state and the
characteristics of the solute, and the remaining thermodynamic
finite-size effects. We will then introduce perturbative methods .
for calculating solvation free energies that are based on thedenSIty of 997.07 kg/fy such that the pressiffewas about 1
approximately Gaussian character of the electrostatic potential atm.

fluctuations. Non-Gaussian behavior and its accurate treatment 1€ Metropolis MC m?thﬁ%d was used to sample configura-
using multistate Gaussian and quasi-chemical models will be tional space in the simulatioris. The translational and rotational

the focus of the last section. move widths of water were chosen to give about 40% acceptance
ratios. The solute was allowed to move as well. Simulations
started from random configurations or configurations of previous
runs with different charges, equilibrated for at least 100 000
To illustrate the various issues arising in calculations of and 50 000 MC passes, respectively, where one pass is one
solvation free energies of charged and polar molecules, we attempted move for each of the particles. Electrostatic potentials

present new calculations of the hydration of imidazole and
imidazolium. We choose this example because recent interest

The protonation of imidazole has been studied previously
using combinations of dielectric, quantum mechanical, and
computer simulation method&:38 Here, we will focus on the
solvation contribution to the protonation equilibrium and reserve
guantum mechanical intramolecular effects for subsequent
treatment.

The imidazole/imidazolium system is more complex than the
systems we have studied before using explicit solvent models:
mono- and divalent ionk}2*water in watef? and tetramethyl-
ammoniunm?* The analyses below should also illustrate how
the calculation of solvation free energies using the Ewald method
and equilibrium fluctuations of electrostatic potentials can be
extended to proteins, in particular the calculation &f'p of
amino acids.

Monte Carlo Computer Simulations of Imidazole in
Water. We studied the solvation of imidazole [Im(p)] and
imidazolium [Im()] in water using Monte Carlo (MC) simula-
tions in the canonical ensemble. For the Im(p) and-Hn(
molecules, we used the partial charges and geometry of Topol
et al.3® as compiled in Table 1. For water, we used the SPC/E
model?® The temperature was 298 K. The Ewald method was
used for the long-range electrostatic interactions with a real-
space screening factor gf = 5.6, wherelL is the length of
the periodically replicated cubic box. A cutoff & < 38(27/

L)2 was applied in Fourier space, resulting ix 510k vectors

being considered. A cutoff df/2 was applied to the Lennard-
Jones and real-space electrostatic interactions based on atoms.
The background dielectric constant in the Ewald method was
corrected from infinity to 8@! The partial molar volume of

the imidazole was chosen as 2 times that of bulk water at a

2. Example: Imidazole and Imidazolium in Water
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TABLE 1: Coordinates x and y (in nm) and Chargesq (in

Elementary Charge Units €) of the Atoms in the Planar E
Imidazole and Imidazolium from the Quantum Mechanical B Py
Calculations of Topol et al3¢ E-loo po
atom X y q o € %‘ o % s ::
Imidazole £-120
N1 0.0000 0.1105 —0.090285 0.325000 0.71128 E . -
C2 -0.1091 0.028 2 0.232373 0.339967 0.35982 3 @ x
N3 —-0.0741 -0.0983 —0.715903 0.325000 0.71128 5 -140 .
ca 0.0636 —0.0984  0.217356 0.339967 0.359 82 -l40 -120 100 -80
C5 01120 0.0298 —0.374687 0.339967 0.359 82 simulation (kcal/e-mol)
H1 —0.0009 0.2112 0.318 027 0.106908 0.065 69 _
H2 —-0.2102 0.066 1 0.102391 0.242146 0.062 76 Té 60
H4 0.1197 —-0.1905 0.082 346 0.242146 0.062 76 S
H5 0.2119 0.0700 0.228383 0.242146 0.06276 E 40 5
Imidazolium z 20
N1 0.0000 0.1128 —0.115106 0.325000 0.71128 2 §_€{ ”
C2 -—0.1086 0.035 3 0.010825 0.339967 0.35982 E 0 g,g'
N3 —-0.0663 —0.0912 -0.122786 0.325000 0.71128 g 20 Al
C4 0.0719 —-0.0949 -0.139642 0.339967 0.35982 -
C5 0.1140 0.0344 —0.122097 0.339967 0.359 82 S -40
H1 —0.0018 0.2141 0.398875 0.106908 0.065 69 40 20 0 20 40 60
H2 —-0.2110 0.068 6 0.230198 0.242146 0.06276 simulation (kcal/e-mol)

H3 —-0.1274 -0.1721 0.402905 0.106908 0.065 69 . ) . . . .
Ha 01273 -0.1872 0.232002 0.242146 0.06276 rigure 2. Comparison of dielectric models (ordinate) with molecular

H5 02131 0.076 6 0224826 0.242 146 0.06276 Simulations (abscissa) for the induced electrostatic potentials due to
the solvent at the atom centers for H)((upper panel) and Im(p) (lower
2The Lennard-Jones-parameterande (in nm and kJ/mol) are taken  panel). Dielectric model results were obtained for several sets of radii
from the AMBER force fielc?® Lorentz-Berthelot mixing rules were in current use: (diamond$}c = 0.267 nm,Ry = 0.231 nm’ (large
applied to combine the Lennard-Jones parameters of the solute atomsircles)Ryny = 0.1160 nmRyc) = 0.1710 nmRc = 0.230 nmRy =
with those of SPC/E watéP. 0.150 nm?* (small circles)Ry = 0.1172 nmR: = 0.2096 nmRy =
0.1738 nnt5 (crossesRy = 0.1172 nmR: = 0.1635 nmRy = 0.1738
at solute atom positions and binding energies of the solute weren™-* A boundary element method was used for the dielectric model
calculated after every pass using the Ewald method in simula- Calculations,e = 77.4: Notice that a radii set that happens to be
tions extending over 200 000 MC passes each. Simulationsqualltatlyely satisfactory fo_r the cation (dlamonds) can be significantly
less satisfactory for the slightly different circumstance of the neutral
were performed for the uncharged, half-charged, and fully pojar molecule.
charged Im(p) and Imi) in their respective geometries. The
equilibrium simulations were performed with 16, 32, 64, 128,
256, and 512 water molecules to study finite size effects.

To complete the thermodynamic cycle and check for con-
sistency, two runs of slow growth thermodynamic integration
were used to calculate the free energy of converting the
geometry from the uncharged Im(p) to the unchargedHm(

systems. Most commonly, periodic (or Befmon Karman)
boundary conditiorf$-8 are utilized for the exterior boundary

of the finite system considered. The theoretical issues engen-
dered by these boundary conditions with finite-rarf§&&land
long-ranged interactions are reasonably well understood. Of

conformation within 150 000 MC passes. Six runs of 200 000 course, simulation calculations need not address issues of what
MC passes were used to calculate the free energy of convertingIS hqppenlng outside the simulation pell. W? hote that it is
the polar Im(p) into an Im{) cation, starting from different possmlg to compute the I_Ewald pqtennal, and in more than one
equilibrated configurations and averaging three charging and Way’l vt\_nthout”coré&dgrtat];_)n of |maget ct;)arge; out5|d_e the
three uncharging runs. The thermodynamic integrations were sgnu ation ceb. o.O:ndw lve ?r?ulmen S based upon image
carried out with 256 water molecules. charges can be avolded completely. .

We will discuss the results of these calculations as they come Itis convenient to express the EW".’“d electrostatic energy of
up in the theoretical narrative. However, before considering Z:;S;im ?)]:‘ Z?fgg:vzha;%fﬁt::a%%ig:nas:lg gglfr?:rlgcsules
more subtle issues, we can make a direct comparison of the P ’

average electrostatic potential exerted by the solvent observed 1
during the simulation with the corresponding predictions of U= %% 0,00 (Figjs) T » quqm P(Fiig) ———| +
dielectric models. Figure 2 shows that comparison for several T T IFicipl
sets of radii in current use. Such a comparison illustrates the =l as<p

basic issue of sensitivity of thermodynamic results to the radii }z zq' %im o(r) — i 1)
parameters and whether extant empirically adjusted radii are 2L L7 Ir|

transferable to slightly different cases. .
whereriqjs = rig — rie. The Coulomb energy was split into

3. Noteworthy Aspects of the Ewald Treatment of intermolecular, intramolecular and self interaction contributions.
Electrostatic Interactions The Fourier representation of(r) reveals the periodicity of

. L ] ~ this potentiaf?!
Viewed from an historical perspective, the most appropriate

treatment of electrostatic interactions for simulation calculations 1_dm .
has been a contentious issue. In this setting it is helpful to note @( 5
: = Vo k
some broad, and nontechnical, characteristics of Ewald treat- k=0
ments that might be typically overlooked. We preface these
observations by noting that simulation calculations treat finite Thek sum extends over the reciprocal lattice derived from the
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real-space lattica of periodically replicated simulation boxes. 400 - . . Evaid .
For a cubic lattice of length = V13, we haven = L (i, j, K) 300 | f 1024 water cluster — - - -
andk = 27L71 (i, j, k), wherei, j, andk are integers. For

numerical conveniencep(r) is partly transformed into real

— 200
space, which leads to its Ewald lattice sum representation: ‘v
"= 100
[=]
erfc@) r +n)) 4 . P E
() = z_ + Z_ o W Hiker _ — 3) 2 o B
r+n =
n | | kzOsz V77 5_100 |
n is a convergence parameter that is chosen to accelerate -200 r
numerical convergence. Note that the valuegdf) is inde- 300 , , , , .
pendent ofy7,>2 0 05 1 15 2 25
r (nm)
dgp(r) =0 (4) Figure 3. Electrostatic potential at the center of a neutral Lennard-
om Jones solute in SPC watéfrom simulations of a solute at the center
of a cluster with 1024 water molecules (dashed line) and with periodic
and that the average potential in the box is 2é13;53.54 boundary conditions and Ewald summation (solid line). Shown is the
potential obtained by integrating the charge density around the solute
=~ — ) — — up to a distanc®& using 1f (cluster) andp(r) (Ewald) for the Coulomb
¢k =0) j\1/ drep(r) =0 (5) interactions. The results are those of ref 58.

In the following, we will separate the Coulomb enengy of

1
(p(rﬁy) -
T gy |

_|_

the solute from the total Coulomb energy eq 1. When the is nonneutral, it is a helpful point of view that the background
system contains a solute with partial chargest positions's, charge density is a simple device that permits smoothness of
its electrostatic interaction energy can be split into a solvent the computed potential on the system boundary. We emphasize
term and self-interactions, that the effect of the neutralizing background charge disappears
as the thermodynamic limit is approached, in which the
_ background charge density disappears.
Ve ;quﬁqmgo(rm) - ;qﬂqy Reaction Field Potentials Are Ewald Potentials for Dif-
B<y ferent Background Charges. Reaction field methods'®>6are
} 2); _ i 6 computationally efficient alternatives to Ewald summation. The
quﬂ r'f(‘) ¢(r) Ir| ®) effective potentials of the sitesite reaction field (SSRF)
method and the generalized reaction field (GRF) metRadin
The first, second, and third sum are the direct interactions with pe viewed as Ewald potentials for a nonhomogeneous back-
water, the interactions of charges on the solute with other soluteground charge. The SSRF and GRF potentials are the solutions
Charges, and the self-interactions of solute Charges, reSpeCtiVelyto the Poisson equation for a source Charge and a Compensating
Ewald Potential ¢(r) Is the Solution of the Poisson  packground. The background charge densities in the SSRF and
Equation That Is Periodic with the Fundamental Period of GRF method are that of a homogeneous sphere and a radially
the Simulation Cell 14515355 A periodic solution of the Poisson  gymmetric charge distribution centered around the source charge,
equation requires that the surface integral of the electric field respectively. The SSRF and GRF method have a finite range
normal to the surface of the simulation cell be zero. This means pecayse of the radially symmetric background charge densities
that the material |nthg simulation cell must have; zero net electric that exactly compensate the source charge when the cutoff
charge. If the physical system of interest is nonneutral, a yistance is reached.
uniform background distribution of charge is included to . . . .
neutralize the nonzero charge of the physical system. Comparison of Ewald P_oter_mals from Simulation of
Consider an elementary charge. Because the Ewald potential\lv.a'“:fr to EIe_ctrostatlc Potentials n Isolated Wa}ter Droplets.
is periodic, we can consider the Ewald electrostatic potential 't IS interesting to make some simple numerical comparisons
implied by centering the simulation cell on this elementary between the Ewgld_potennals that arfe_experlenced in S|mula_t|0n
charge. By symmetry the Ewald normal electric field is zero of WaterW|_th perlodl_c bo_undary conditions to the correspond_mg
on the cell boundary. The Ewald potential can thus be electrostatic potentials in water droplets. Such a comparison

considered to be that of a cutoff on the cell bounethye cutoff is simplified if we locate a distinguished solute at the origin of

at the maximum distances achievablgith zero normal deriva-  ©ur Cartesian coordinate system. For a spherical Lennard-Jones

tive analogous to a shifted-force correction. solute, Figure 3 shows a typical variation of the electrostatic
Ewald Potential Pushes the Electrostatic Boundary out- potential at the solute center with inclusion of the charge density

ward as far as Possible but Still Retains Smoothness on the  in progressively larger spherical volumes of radRisround
Boundary. The minimum image cutoff shares with the Ewald the solute. Notice the substantial variation of the electrostatic
treatment the property that the electrostatic potential is not cutoff potential with inclusion of the solvation shells near the solute.
in any region of the simulation volume, the largest volume that However, after about three shells the net electrostatic potential
must be physically considered. However, as demonstratedoscillates about the Ewald asymptotic value before the ball
above, the Ewald potential is smooth on that boundary since it penetrates the physical interface of the droplet. Thereafter, the
is the periodic solution of the Poisson equation. This is an net electrostatic potential displays the effects of the surface
important technical advantage that facilitates investigation of polarization of the droplet as it makes a transition to the very
system size dependence of computed properties, i.e., thedifferent value that characterizes the whole droplet. We observe
variation of system properties with variations of the cell thatthe Ewald potential faithfully captures this interior potential
boundaries. Inthose cases where the physical system of interestvhile avoiding detailed considerations of the droplet interface.
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Single lon Hydration Free Energies Are Well-Defined I A I

e . . ) . o v :
within Molecular Simulations. Electrostatic potentials can be Ehe Ly % £

defined unambiguously as solutions of the Poisson equation with '>_\> i)@_\) 4\,\( . % / _
specified charge densities and boundary conditions. Electro- .L\f o & /€¢ A .
7 ,
\

. . . . ~F
static potentials are computed throughout simulations of aqueous 5 2’ ,_"> 2’
N )\

solutions even if charge densities and boundary conditions may ol 7%

not be specified explicitly. If the system of interest is Figure 4. Schematic representation of the thermodynamic finite-size
nonneutral, these issues deserve emphasis because single igterrection. The thermodynamic finite-size correction is the difference
free energies are typically not measured experimentally. between an infinite Born model and a Born model under periodic

s boundary conditions. A spherical ion of chargeand radiusRg is
b Onda mOIeg.l:.lar S.Calti’ %ep;.er.lt(.:ienC?S .Onl SpeCIECZ cif theembedded in a medium with a dielectric constaimside the simulation
oundary conditions in the definiion or singie lon hydration . box. In addition, the box is filled with the neutralizing background

free energies can be avoided. This is accomplished by spheri-charge. Periodic boundary conditions are applied. The corresponding
cally integrating the electrostatic potential over the charge electrostatic potential is determined from the Poisson equation with
density around a charge site up to a distance where that potentiakppropriate boundary conditions on the box boundary and ion siface.
saturates. Using Ewald interactions corresponds to such a

N

spherical integratiofi->* Figure 3 shows results for electrostatic 512128 64 30 16
potentials obtained using two different choices for the boundary — y q T
conditions—a solute-water cluster and a periodic system. The -205 ¢ Gop —— |75
i ivi i Born radius 0.29 nm ——
observed agreement is a nontrivial computer experimental — 210 | o 2 T me) |55 =
observation. 2 2
. . 2215 ¢ {60 2
4. System Size Extrapolation -~ ~
. . . I-220 65 1
Computer simulations are performed for a finite system of k=i L=
molecules. In most applications, the properties of the thermo- S 205 | {70
dynamic-limit, infinite system are sought. In Coulombic
systems, pronounced finite-size effects are ubiquitous due to -230 r B . . 175
the long range of the interactions. We can separate finite-size 0 0.5 1 15 P
effects in Coulombic systems into two categories: (1) those L% (nm™®)

caused purely by the long-range electrostatics independent ofgjgyre 5. Finite-size dependence of the free energies of charging

the thermodynamic state, and (2) finite size effects that dependimidazole and imidazolium (filled circles and open squares on the right-

on the thermodynamic state (temperature, pressure, etc.). and left-hand scale, respectively), as a function of the inverse volume
The electrostatic finite-size effects in the Ewald treatment of of the simulation box, 1£. The top scale gives the number of water

Coulomb interactions arise from self-interactions and interac- molecules.

tions with the neutralizing background essential for nonneutral

systems under periodic boundary conditions. Electrostatic finite- excluding self-interactions. Note that in constant pressure

size effects can be treated exactly by including the second andsjmulation with varying box volumes must also be averaged.

third sum in the electrostatic enerb of the solute eq 6, which Thermodynamic finite-size effects on the other hand can only

account for self-intere}ctions of the Solufex? 259 F_or an ion_ be corrected approximately within a model. For instance, we
of Char969'4tge resulting correction to the solvation chemical can use the difference between a truly infinite version of a model
potential i8* and its finite periodic version to correct for thermodynamic finite
size effect$?-62 as schematically shown in Figure 4. For
spherical ions, a Born mod&land its periodic equivalent leads
to finite size corrections that depend on the dielectric constant
e of the solvent, an effective Born radi&g of the ion, and the
whereusim is the chemical potential for charging the ion from net chargeg of the ion80.64

zero charge to net chargg calculated from the Ewald

2
Helec= Usim + q_2§ (7)

interactions with the solvent excluding self-interactions (i.e., 1, Arr(e — 1)R|32
including only the first sum in eq 6)eiec includes the self- Uinerm ™~ Uelec T qu —t 9
interactions, and is the ionic self-term. For a cubic box of € 3el

lengthL, we haveé = lim,—o[e(r) — 1/|r|]] ~ —2.837297L. _ _ _ _ _
Electrostatic finite size corrections for polar molecules are Whereunmermis the chemical potential for charging that includes
developed in ref 13. The corresponding free energy of changing the thermodynamic and electrostatic finite-size corrections.

partial charges located at positionson a molecule frongy, to Figure 5 illustrates the finite size effects for the free energies
Oy is of charging Im(p) and Im{) after correction for Ewald self-
interactions. Free energies were calculated from sixth-order
1 integration formulas with corrected means and variances from
Attejee= Mhgim + BZ (A9 — Aup)| 9 (rop) — _]D+ Table 2 that include the electrostafibut not the thermody-
(;;ﬁ "ol namic finite-size correction. The free energy is plotted as a

1 function of 118 wherelL is the box length. We find that the
—Z(q(l2 — qi)& (8) free energy of charging the polar Im(p) is independent of the
249G system size within the statistical errors of about 1 kJ/moNor

= 16 toN = 512 water molecules. However, the free energy
where [l..0Odenotes a canonical averag@usim includes only of charging the Im{) cation shows a system size dependence
the energy difference corresponding to the first sum in eq 6, proportional to 13, as would be expected from our finite size
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TABLE 2: Averages C; (in kd/mol) and Variances C; [in (kJ/mol)?] of the Electrostatic Energy of Imidazole and Imidazolium
in the Uncharged, Half-Charged, and Fully Charged States. Finite-Size Corrections Have Been Applied

uncharged half-charged charged
N ave var ave var ave var
Imidazole
16 1.2+ 0.5 209.6+ 7 -56.7+ 1.3 436.8+ 25 -156.9+ 1.5 495.6+ 32
32 0.5+ 1.0 2244+ 7 —57.£1.6 427 .4+ 22 —158.7£ 1.5 456.4+ 26
64 1.8+ 0.6 208.2+7 —58.8+ 2.0 510.0+ 25 —155.5+15 480.9+ 15
128 1.0+ 0.7 205.1+9 —59.2+ 1.6 429.5+ 16 —156.1+ 1.8 491.9+ 20
256 1.3+ 0.5 204.8+7 —59.2+ 1.6 429.1+ 22 —152.9+ 2.0 473.4+ 24
512 1.1+ 0.5 209.6+ 9 —57.7£ 1.3 410.8+ 17 —155.9+ 2.0 539.2+ 30
Imidazolium
16 33.4+1.3 1326.74+ 10 —226.5+ 1.0 1305.5+ 7 —500.8+ 1.0 1391.0+ 14
32 33.9+1.0 1267.6+ 12 —215.0+ 0.9 1267.0+ 10 —483.4+ 2.0 1375.0+ 20
64 3594+ 1.1 1234.0+ 12 —208.7+ 1.3 1252.4+ 13 —473.9+ 15 1307.9+ 18
128 34.9+1.0 1226.0+ 14 —203.5+ 0.9 1215.9+ 17 —469.1+ 1.3 1291.2+ 22
256 341+ 1.1 1222.5+ 22 —204.4+1.2 1256.3+ 24 —465.2+ 1.5 1330.2+ 33
512 359+ 15 1248.8+ 18 —201.2+1.8 1248.3+ 26 —461.7+ 15 1305.3+ 25
due to electrostatic interactionAu(1), the thermodynamic
0.02 ¢ parameter sought, is then expressed by the fundamental result
e MO =@My = [dupu;A=0)e™ (10)
;E Here,3~1 = kgT is Boltzmann’s constant times the temperature
F 001} andll.[}—o denotes a thermal average with the solute in reference
stateA = 0. This formula requires the consideration of the
electrostatic potential even though the electrostatic potential of
a phase is an operationally subtle propéft§2 Despite that
subtlety, the potential sought is conceptually well-defined as
0 the solution of Poisson’s equation with specified charge density

600  -500 -400U (kej(/)r?lol) 200 -100 0 and boundary conditiorid;53.58.59,66

¢ Direct use of eq 10 can present difficulties. Thouggh) is
the electrostatic energiék, of Im(+). The uncorrectetle histograms often. §ubstantlally Gaussian, the' fu.ndamentallforn.].ula eq10is
are shown with symbols, together with corresponding Gaussian sensitive to th? tails gb(u). That limits the z_appl|cab|llty of eq
distributions. After correction for electrostatic and thermodynamic finite- 10 for calculations of even small changes in the charge state
size effects, the corresponding Gaussian distributions “collapse” and In addition, the simple estimator AV, ~ In[M*lziM:1
agree closely for all system sizes of ¥6N < 512 water molecules. e—/ﬁui] from M energiesy; observed in a simulation is biased

and large sample sizelsl are required for this bias to be

analysis®® Rather than using a more realistic shape of the negligible®”
molecule in the dielectric model of ref 60, we fit the observed  Perturbation or cumulant expansions provide a technique to
free energies to the spherical Born model eq 9 with an effective analyze these distributiod3;16:68-73 A cumulant expansiott
radiusRg = 0.207 nm and an infinite dielectric constant which  with respect tol of eq 10 provides
reproduces the data over the whole range of system sizes of 16

Figure 6. Finite-size correction of the probability densitip@Je) of

< N =< 512 water molecules. © nC"

To further illustrate the power of the finite-size corrections, [exp (—pAU)L = exd » (—f4) - 11)
Figure 6 shows the probability distributions of electrostatic = n:
interaction energiellg of the imidazolium cation Im{) with . . .
the N water molecules, the first term of eq 6. Also shown in This defines the cumulanG, of ordern = 0, 1, 2 as
Figure 6 are the corresponding Gaussian distributions, which C.=0 (12a)
nicely reproduce the calculated histogramdJgf. However, 0
we observe a strong system size dependence: small systems C, =m0, (12b)

have narrower distributions dfe with less negative averages

compared to large systems. When we apply the electrostatic )

and thermodynamic finite size corrections for the mean and C, = Hu — WG T (12c)
average, the Gaussian distributions “collapse” to a single ) o

distribution corresponding to the limit of an infinite system size. We interpret eq 11 as a Taylor expansioniirbut augment

We note that the finite-size correction is large: for= 16  Au(?) toinclude the self-contributior¢)?5/2, wheref vanishes
water molecules, the averagh, changes by about370 kJ/ in the thermodynamic limit but accounts for finite-size effects
mol (150ksT). as discussed above. Then for the charging of an ion from a
neutral reference condition we have
5. Perturbation Theory )2
A fundamental view of the thermodynamics due to electro-  Au(4) = AqUILL_, — ( g) [Blu — WO °Gp — E] + ...
static interactions may be obtained from consideration of the (13)

distribution p(u; 4 = 0) of electrostatic energies in the
reference charge state= 0. The part of the chemical potential ~ This result should be compared to the BSrformula for the
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hydration free energy due to electrostatic interactions of a s [ ' ' 7 T i01 —— ]
spherical ion of radiu®k and chargelq: (1)1(1) —
(10 — 1 Bl e |
€ — = .
Aug(l) = — 2‘; (T) (14) g o0 -
< .140
wheree is the dielectric constant of the solvent. The matching 3
of the second-order terms between the cumulant expansion and & -142
the continuum formula provides a determination of the radius S 144
R of a spherical ion. The distributiorgu; A = 0) required to
evaluate the cumulant averages involve the nonelectrostatic -146 ¢
interactionsl = 0 between solvent molecules and the solute. qeg b
The indicated average thus generally depends upon full char- 2 25 3 35 4 45 5 55 6

acterization of the solvent. Note that the continuum model order of integration formula

neglects the molecular contribution lineariin This linear term Figure 7. Free energy of charging the polar imidazole Im(p) to the
contributes to the asymmetry between anion and cation solva-Midazolium cation Im) as a function of the order of the integration
itioonn ,Sirggﬁing the solvation of anions more favorable for a given Lor:glgz e@dk,)r:gﬂ‘l-((::i[aersg:]feze, gﬁ;n?ljlr;' ;nggg;d;g!:“ves used at the
In principle, higher order cumulants could be used to obtain " T
information about the other Taylor coefficients. However, as 0 b __(9!1’_'0,—_»9?,____,,,,_______________;___ ,,,,, 4
was observed by Smith and van Gunstéiehigher-order
cumulants are increasingly difficult to extract from computer e
simulations of limited duration. Though direct extension of
perturbation theory beyond fourth order has been impractical,
interpolative approximations polynomial mhave been more
successful. For the charging of water and ions, polynomials of
order six and higher were necessary to account for the simulation 150 b (@il
datat3147% Thus, perturbation theory was found to be unsat- (@psmfpsn) —=—-
isfactory in such cases. For atoffiand molecular ion&} a @ R S
kink is typically observed for Au(A)/dA as a function of charge 200 p PPrRTT - - -
A at modest values of this parameter when the solvation shell 0 0.2 04 N 0.6 0.8 1
changes from a cationic to an anionic structure. Additional

nonlinearities were observed at high values of the ionic charge F19ure 8. Thermodynamic cycle with the free energies connecting
217,75 the four states of the uncharged and charged imidazole and imidazolium

. . as a function of a linear coupling parameter. Shown are results for
Table 2 contains the averages and variances corrected folcharging of imidazolium (solid line), uncharging of imidazole (long

electrostatic finite-size effects of the electrostatic energies of dashed line), conversion of imidazole to imidazolium (dotted line) and
Im(p) and Im{) for system sizes between 16 and 512 water conversion of uncharged imidazole to uncharged imidazolium (short
molecules. Errors of one standard deviation of the mean weredashed line).

estimated by plotting the block error as a function of the number

of blocks. The estimated error reaches a plateau when blockformulas eqs 15ae are exact to order 2, 2, 4, 4, and 6 in a
values are uncorrelated. From the averages and variances, w@erturbation expansion, respectivély? Figure 7 shows the
can calculate the chemical potentials of charging using integra- free energy difference between hrl(and Im(p) as a function
tion formulas {jk) exact to various orders that involvg, and of the integration order for the 512 water molecule system. We
k derivatives of the free energy with respect to the coupling find that as the order of the integration formula increases, the

parameter at the uncharged, half-charged, and fully chargedfree energy difference converges, with the sixth order formula
state?! bracketed by the two fourth-order formulas. The statistical error

of the free energy difference is about 1.5 kJ/mol. Notice that
Au(010)~ C,(A = 0.5) (15a) the discrepancy between the two second-order results of Figure
7 is significant on the scale of the statistical uncertainties. This

Aﬂ(lol)gl[cl(,l =0)+ C,(A=1)] (15b) emphasizes that the .charging free energy is not a quadratic
2 function of the coupling parameter. Note that the centered

rn—>+)

(qn—>+’

-100

A (kJ/mol)

1 second-order formul& has a smaller systematic error.
Au(111)~ L Cy(2 = 0) + 4C4(4 = 0.5) + Cy(4 = 1)] Figure 8 illustrates the complete four-node thermodynamic
(15¢) cycle, wherel is a coupling parameter changing the partial
charges on the molecule linearly from state zero to one. The
C,(A=0)—C(A=1)] (15d) four nodes of the cycle are the uncharged and charged imidazole
and imidazolium. We find that the free energies of charging
1 and conformational changes are consistent within the statistical
Auw(212)~ @[7(31(/1 =0)+ 16C,(21 =0.5)+ errors. Interestingly, the free energy of charging the polar Im-
B (p) to the Im@) cation has a maximum for the linear charging
7C (A =1)] = £ Cal2 = 0) = C(2 = 1)] (15€) path chosen here. This increase reflects the linear terms of eq
13, i.e., increasing the net charge on the imidazole initially costs
where the cumulant§; andC; contain the electrostatic finite-  free energy.
size corrections. Formulas involving higher cumulants and  Dielectric continuum models predict a quadratic proportional-
different nodesl; are discussed in ref 71. The integration ity of the free energy of charging on the linear coupling

Au(202)~ Au(101)— 1%[
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Figure 9. Comparison of the second-order perturbation expansion
(dashed lines) with the reference free energies of charging Im(p) to
Im(+) (top), uncharged Imk) to the cationic Im¢) (middle), and

uncharged Im(p) to the polar Im(p) (bottom). Also included as an inset

Hummer et al.

distribution of electrostatic potential energies of the solute.
Rather than approximating this distribution as a single Gaussian
distribution, perhaps with perturbative corrections, we discrimi-
nate hydration structure on the basis of simple parameters
diagnostic of hydration substates. We assume that the prob-
ability distribution of electrostatic potential energies is Gaussian
for each substate. Therefore, the full distribution is a superposi-
tion of Gaussian distributions for the various substates.

Thus we attempt to represent the observed complicating
features ofp(u) by a combination of simpler states:

p() = 3 Wi, (U) (16)

with weightsw, > 0, >, wy = 1 and normalized densitigg(u)

> 0, [ du py(u) = 1. We will seekp,(u)’s of Gaussian form,
representing the overall system as a linear combination of
Gaussian subsystems, each showing linear response to electro-
static interactions. Representipgu) by a sum of Gaussian
densities can give nontrivial results for the chemical potential,
as can be seen by substituting eq 16 into eq 10,

Au() = —kgT In'y wy g Pmisiontz 17)
n

wherem, and o2 are the mean and variance of the Gaussian
pn, respectively.

The non-Gaussian fluctuations of the electrostatic potential
in liquid water are associated with changes in the conformations
of protons that make hydrogen bonds to the solute. If those

in the bottom panel is a comparison with multistate Gaussian models f|ctuations could be tempered, a Gaussian model might become

(symbols and detdash lines) shown with estimated statistical errors.

The multistate expansions about the charged and uncharged states are

shown with open squares and filled circles, respectively.

parametei. In a molecular theory, such a quadratic charging
free energy arises when the probability density of electrostatic

potential fluctuations is Gaussian. Second-order perturbation

more accurate. Thus, suitable substate diagnostic parameters
are the number of hydrogen bonds made to the solute.

Explicit calculations have shown that this approach eliminates
most of the detailed numerical inaccuracies of the Gaussian
fluctuation models for hydration of a water molecule in liquid
water?l The markedly non-Gaussiap(u) was accurately

theory would then be exact. Figure 9 compares second-order'éPresented as the sum of Gaussian distributions implied by this

perturbation theory with the reference sixth-order free energy

polynomial calculated from the averages and variances in Table =
2. We find that the perturbation expansions about the charged” =

state 4 = 1) are accurate over a relatively wide range frdm
= 1 to almostA = 0.2. The expansion about the uncharged
statel = 0 on the other hand breaks down rapidly at abbut
=0.2.

6. Non-Gaussian Fluctuations

Multistate Gaussian Models. One idea for improvement
of dielectric models is based upon a physical description of the
structure of the first hydration shell. That first hydration shell
can be viewed from the perspective of Stilling&Weber
inherent structures or substatésThese are potential energy

basins of attraction for steepest descent energy minimization.

If those first hydration shell molecules stayed always in one
basin, then a Gaussian model for thermal fluctuations would

be reasonable. Empirical radii parameters reflect the charac-

teristics of that single basin. However, changing conditions may
result in reweighting of slightly accessible basins or the opening
of new basins. The Gaussian or dielectric models may fail to
describe these possibilities well. This picture is physically better
defined than the commonly nonspecific discussions of electro-
striction and dielectric saturation.

A corresponding “multistate Gaussian model” was developed
in ref 21. Attention is directed to the thermal probability

definition of a hydration substate. We foumg > 1073 for 1

< n < 6 with 3.64 being the average number of neighbors and
4 the most probable number of neighbors. The calculated
change of the chemical potential upon change of the charge
state of a solute water molecule is correct to within 5%. This
is a remarkable result becausg(4) is nonquadratic, requiring

an eighth-order polynomial to fit the simulation data for
chemical-potential derivativég.1471 This shows that sufficient
information can be extracted from the simulation to describe
the distributionp(u) helpfully and that such an approach can
be successful even for perturbations involving changes of the
chemical potential as large as kgT.

Similar behavior can be anticipated for hydration of other
neutral, polar solutes such as the imidazole example studied
here. Figure 9 (inset) shows the results of the multistate
Gaussian model applied to charging and uncharging the polar
imidazole Im(p). Fluctuation data were collected from a
simulation of the uncharged and charged Im(p)irr 128 water
molecules, extending over 4MC passes to allow for error
estimates. Instead of determining the overall mean and variance
of the electrostatic potential for a second-order perturbation
expansion, we calculate the means and variances for several
Gaussian distributions from structures sorted according to the
number of hydrogen bonds. Inspection of the radial distribution

functions of water oxygen and hydrogen around imidazole sites

shows one strong hydrogen bond donor, H1, and one acceptor,
N3. As a criterion for the formation of a wateimidazole



Feature Article J. Phys. Chem. A, Vol. 102, No. 41, 1998393

hydrogen bond, we used that the distance between the acceptor _ [exp{ —pAU}
(nitrogen N3 or water oxygen) and the donor hydrogen has to Ku = Ky, — (19)
be smaller than 0.23 nm. We can then sort structures according [[exp{ —pAu} (g ]

to the numbers of hydrogen bonds accepted and donated byrys; thisky is built on the pattern of the chemical equilibrium
the solute. With this simple criterion, we find that six and two - g4 18 put without a “solvation factor” for the reactant solute
Gaussian distributions contribute to the expansions about thejndicated on the left.

charged and uncharged state of Im(p), respectively. This  Now consider all possibilities for clusters. A thermodynamic
multistate Gaussian model greatly improves the quality of the implication of this information is

expansions, both about the charged and uncharged state. The

reference free energy is now within the statistical errors of the Uxa- = KT IN[pye VIOy, ] — kTIn[pO%KMpW“] (20)
two multistate Gaussian models over the whole range0<

1.

Quasi-Chemical Theories Those difficult anionic cases
mentioned above can be attacked more directly. The local
neighborhood is again used to discriminate structural possibili-
ties. But, in addition, the consequences for the hydration free
energy of the molecular interactions within that neighborhood

Po is the probability that the clustering volume would be
observed to bemptyin the equilibrium solution; thus;-kT In
Po is the free energy for formation of a cavity for the clustering
volume in the solution. The sum is over all clusters with zero
or more ligands. The product of the densities involved with
- - .~ _each term includes a density factor for each ligand. This
are treated fully. This reserves the longer ranged interactions . .

formula makes the conventional separation between the con-

for simple approximations, e.g., with Gaussian models. tributions of intermolecular interactions and the noninteraction
These theoretical developments arose from recent molecular,. . . . .
(ideal) termspgxe- is the partition function of the bare solute in

calculationg® that suggested how a chemical perspective can . X . .

. . . ) the absence of interactions with any other speciesmmnds
be helpful in computing thermodynamic properties of water and . Do

. . . the density of the solute. As an example, for an atomic ion
aqueous solutions. That calculation used electronic structuresuch as the chloride ion Ciwe would butoxe = VIA3 with V
results on the Fe(}D)s>" cluster and simple, physical estimates putdx .
A - the volume of the system and the thermal deBroglie

of further solvation effects. The results were organized ac- S .

. . . . wavelength of the chloride ion. This formula becomes ap-
cording to the pattern of a simple chemical reaction and a roximate when approximate models are adoptegaior K
surprisingly accurate evaluation of the hydration free energy gn d for the solvgt?on factors. Those uar?tities de eMn d on
was obtained. Despite this recent motivation, the theories | .. .- . ' qua penc

definition of the clustering volume. But, since the physical

developed are akin to good approximations of historical and L
L . . roblem is independent of those parameters, the theory should
pedagogical importance in the areas of cooperative phenomeng_ . i
e insensitive to them.

and phase transitiorf8. In those areas, similar approximations S . . .
are called Guggenheim, quasi-chemical, or Bethe approxima-. The motivation for this approach is that a substant!al but
tions intricate part of the free energy sought is to be foundjn
’ . . . The number of possibilities for ligand populations will be small
These quasi-chemical theoriare constructed by consider- for molecular scale clustering volumes. So a limited number
ing a geometric volume fixed on the solute molecule and . 9 ; .
of terms must be considered. Because the clusters will be small

performing a calculation analogous to the evaluation of a grand . .
. " . I, systems, elaborate computational methods can be applied to the
canonical partition function for that volume. All the possibilities - . . :
prediction of theKy, including current electronic structure

for occupancy of that volume by solvent or other solution species techniques. With the complicated chemical interactions sepa-
must be considered eventually. The final result can be described ques. P - - €p
rated for individual treatment the remaining hydration contribu-

by reference to simple patterns of chemical equilibria such as tions should be simpler and the required theories better

q- - q- controlled.
XT 4 nH0 == X(H0), (18) Equation 20 should be compared with eq 17. One difference

is that eq 20 attempts to provide the whole hydration free energy,
not just the part due to electrostatic interactions. That explains
the presence gy in eq 20. Beyond that, the structures of these

formulas are similar. The presence of more than one term in

dilute gas phase. We adopt the convention Kiat= 1 forthe e sum of eq 20 is an expression of an entropy contribution
n = 0 case that zero ligands are involved. Note #abw" is a_ssomated with the possmllltles_for different Ilgand populations.
dimensionless and this observation resolves standard state issueg.'na"y: the cpmplete cgqulgtlon of th_K,M includes non-
The factors denoted biexp{ —BAu} Gc, where C indicates Gaussian statistical possibilities not anticipated by eq 17.
either a water molecule or the M-cluster, carry information about 7 Conclusions

the solvation free energy of the species involved. For the species’"
other than the cluster this is the familiar Widom factor. For Recent calculations of the hydration free energy due to
the cluster, this factor requires a slight additional restriction. It electrostatic interactions between charged and polar solutes in
is the average of the Boltzmann factor for clustsolution water have obtained high accuracy results for the simple
interactions over the thermal motion of the cluster and solution molecular models that are the basis of most simulation calcula-
under the condition that the only interactions between these tions1314.21.62.79.80 An important step in securing those high
subsystems rigidly exclude additional solvent molecules from accuracy results has been a careful consideration of treatment
the cluster volume for the complex. This restriction enforces a of long-ranged interactions. That work suggests thatEwald
constraint required to preserve simple enumerations that underliemethod is an easy way to get correct hydration free energies
these results. The theoretical structure is designed so that simpldrom molecular calculations, that is, to achieve well-character-
approximations such as dielectric models might be used for theized results appropriate to the thermodynamic limit in which
factorsléexp{ —fAu}ldc. But more detailed techniques might the system size tends to infinity for given densities and
be applied to the calculation ¢fy. Finally, we compile temperature. Additionally, it suggests that molecular simulations

The solute of interest is denoted here generically &5 X star-
type cluster of that solute witm water (W) molecules is
considered as the product. For such a cluster, call it an
M-cluster, we could calculate the equilibrium ratq, for a
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