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Recent developments in molecular theories and simulation of ions and polar molecules in water are reviewed.
The hydration of imidazole and imidazolium is used to exemplify the theoretical issues. The treatment of
long-ranged electrostatic interactions in simulations is discussed extensively. It is argued that the Ewald
approach is an easy way to get correct hydration free energies corresponding to thermodynamic limit from
molecular calculations. Molecular simulations with Ewald interactions and periodic boundary conditions
can also be more efficient than many common alternatives. The Ewald treatment permits a conclusive
extrapolation to infinite system size. Accurate results for well-defined models have permitted careful testing
of simple theories of electrostatic hydration free energies, such as dielectric continuum models. The picture
that emerges from such testing is that the most prominent failings of the simplest theories are associated with
solvent proton conformations that lead to non-Gaussian fluctuations of electrostatic potentials. Thus, the
most favorable cases for second-order perturbation theories are monoatomic positive ions. For polar and
anionic solutes, continuum or Gaussian theories are less accurate. The appreciation of the specific deficiencies
of those simple models have led to new concepts, multistate Gaussian and quasi-chemical theories, which
address the cases for which the simpler theories fail. It is argued that, relative to direct dielectric continuum
treatments, the quasi-chemical theories provide a better theoretical organization for the computational study
of the electronic structure of solution species.

1. Introduction

Water, the most commonly encountered liquid, exerts both
chemical and physical influences on aqueous molecular pro-
cesses. Hydration effects are often divided into hydrophobic
and hydrophilic categories. Hydrophilic solutes are typically
ionic or polar species and may participate in chemical interac-
tions with the water solvent. Because of the long range of the
electrostatic interactions and their strength relative tokBT,
hydrophilic hydration presents distinctive conceptual and practi-
cal issues for understanding and predicting the influence of
hydration on chemical and biochemical events in water.

A principal and long-standing technical issue is the treatment
of infinitely long-ranged interactions in the context of a sample
of finite size.1 Recent work has helped to resolve this problem.
One algorithmic approach to treatment of long-ranged interac-
tions is the use of Ewald interactions within the conventional
periodic boundary conditions.2 We argue here thatthe Ewald
approach is an easy way to get correct hydration free energies
from molecular calculations, that is, to achieve well-character-
ized results appropriate to the thermodynamic limit in which
the system size tends to infinity for given densities and
temperature. In addition, molecular simulations with Ewald
interactions and periodic boundary conditions can also be more
efficient than rougher approximations that are often employed
to compute hydration free energies for molecularly well-defined
problems. We anticipate results below by noting that we obtain
accurate, thermodynamic limiting results for the hydration free
energy of imidazole with as few as 16 water molecules included

in the simulation. The price to be paid for this accuracy and
efficiency is additional effort in understanding Ewald calcula-
tions from a physical viewpoint and in implementing Ewald
interactions,2 its equivalents,3-7 and alternatives.8-10

The physical issues motivating simulation calculations of this
type revolve around dielectric continuum models of hydration
of ionic and polar solutes.11 It is natural and common for a
simple approximation to provide a conceptual baseline for
considering more accurate theoretical results. But the converse
comparison is foremost for this work. The theoretical efforts
over recent years have provided sharper tests of the validity of
the continuum approach than merely the question: is an
empirically correct hydration free energy obtained? Recent
work has clarified that the dielectric models are simple
implementations of thermodynamic perturbation theory through
second order in electrostatic coupling parameters such as solute
charges;12-14 dielectric models can also be considered a simple
implementation of an ansatz that electrostatic potential fluctua-
tions are distributed according to a Gaussian probability
density,15 or they can be considered a simplified linear response
theory.16-18

Second-order perturbation theory was found to be satisfactory
for some solutes such as alkali ions,14 but unsatisfactory for
water13,19 and anions.14 In the latter cases, of course, an a
posteriori adjustment of cavity radii could still produce the
correct hydration free energies.20 However, the more ambitious
molecular theory ties the values of radii parameters to molecular
properties that depend on the thermodynamic state of the system
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(temperature, pressure, and composition of the solvent) and to
nonelectrostatic characteristics of the solute-solvent interac-
tions. The radii are not separately adjustable when viewed from
that deeper level of molecular theory. However, the radii can
be well-defined and arenot properties of the solutes alone but
incorporate information about the solvent and thermodynamic
state.

For water as a solvent, the case of exclusive concern here,
the most prominent failings of second-order perturbation theory
are associated with solvent proton conformations that lead to
non-Gaussian fluctuations of electrostatic potentials.14,21 Thus,
the most favorable cases for the second-order perturbation
theories are monovalent atomic positive ions. In such cases,
oxygen-hydrogen bonds of water are oriented away from the
ion. Neutral, polar molecules that may form specific hydrogen
bonds with the solvent are more challenging for these theories,
though the hydration free energies sought are smaller in
magnitude than for typical ions. Negative molecular ions are
expected to offer further complications because now the
problematic proton interactions with the solute will be strong.
However, we have less experience with realistic negative ions
partly because the molecular models used for simulation are
less well-developed than for other cases.

The appreciation of the different possibilities for fluctuations
has led to new theories of electrostatic hydration free energies.21

These theories analyze electrostatic distributions more broadly,
still using Gaussian models at crucial steps, but now several
Gaussian distributions are derived from an analysis of the first-
shell environment of the solute. For the important case of
hydration of a water molecule, this extension repairs the
breakdown of a single Gaussian theory. Negative ions can still
be problematic, but the multiple Gaussian approach has also
motivated development of quasi-chemical theories22 that are
based, in principle, on full information about the thermal motion
of the first hydration shell. Though experience with the quasi-
chemical theories is limited,23 we anticipate that they should
provide better descriptions of the hydration free energies, in
addition to providing a reasonable pathway to carry out solution
phase electronic structure calculations on hydrated negative
ionsscalculations that would be difficult particularly in the
absence of hydration effects.

In the following section, we will first introduce the model
solute imidazole, which was chosen as a molecular solute to
exemplify, combine, and extend aspects of ionic and polar
solutes studied previously.12-14,21,24 Results for imidazole and
imidazolium will be used throughout the manuscript to illustrate
the theoretical issues. We will discuss the Ewald treatment of
electrostatic interactions, motivating it in various ways. Sub-
sequently, finite-size effects will be studied. The correction for
the typically large finite-size effects is essential for accurate
calculations of solvation free energies of polar and charged
solutes. We distinguish between electrostatic finite-size effects
that are independent of the thermodynamic state and the
characteristics of the solute, and the remaining thermodynamic
finite-size effects. We will then introduce perturbative methods
for calculating solvation free energies that are based on the
approximately Gaussian character of the electrostatic potential
fluctuations. Non-Gaussian behavior and its accurate treatment
using multistate Gaussian and quasi-chemical models will be
the focus of the last section.

2. Example: Imidazole and Imidazolium in Water

To illustrate the various issues arising in calculations of
solvation free energies of charged and polar molecules, we

present new calculations of the hydration of imidazole and
imidazolium. We choose this example because recent interest
in these problems has focused on predicting acid-base equilibria
of biochemical relevance.25-31,33 We will calculate the charging
free energies of the protonated imidazolium and the neutral,
polar imidazole (Figure 1). Imidazole in water provides a rich
example: the polar imidazole molecule can be protonated at
the N3 position to form a molecular cation, imidazolium. This
protonation reaction has a pKa of about 7.32 It provides a basis
for pKa calculations of ionizable residues of proteins.25-31

Imidazole is the building block of histidine, one of the most
active amino acids enzymatically and ubiquitous in the active
sites of enzymes that operate at room temperature and neutral
pH.33

The protonation of imidazole has been studied previously
using combinations of dielectric, quantum mechanical, and
computer simulation methods.33-38 Here, we will focus on the
solvation contribution to the protonation equilibrium and reserve
quantum mechanical intramolecular effects for subsequent
treatment.

The imidazole/imidazolium system is more complex than the
systems we have studied before using explicit solvent models:
mono- and divalent ions,14,21water in water,13 and tetramethyl-
ammonium.24 The analyses below should also illustrate how
the calculation of solvation free energies using the Ewald method
and equilibrium fluctuations of electrostatic potentials can be
extended to proteins, in particular the calculation of pKa’s of
amino acids.

Monte Carlo Computer Simulations of Imidazole in
Water. We studied the solvation of imidazole [Im(p)] and
imidazolium [Im(+)] in water using Monte Carlo (MC) simula-
tions in the canonical ensemble. For the Im(p) and Im(+)
molecules, we used the partial charges and geometry of Topol
et al.,36 as compiled in Table 1. For water, we used the SPC/E
model.40 The temperature was 298 K. The Ewald method was
used for the long-range electrostatic interactions with a real-
space screening factor ofη ) 5.6/L, whereL is the length of
the periodically replicated cubic box. A cutoff ofk2 e 38(2π/
L)2 was applied in Fourier space, resulting in 2× 510k vectors
being considered. A cutoff ofL/2 was applied to the Lennard-
Jones and real-space electrostatic interactions based on atoms.
The background dielectric constant in the Ewald method was
corrected from infinity to 80.41 The partial molar volume of
the imidazole was chosen as 2 times that of bulk water at a
density of 997.07 kg/m3, such that the pressure42 was about 1
atm.

The Metropolis MC method was used to sample configura-
tional space in the simulations.43 The translational and rotational
move widths of water were chosen to give about 40% acceptance
ratios. The solute was allowed to move as well. Simulations
started from random configurations or configurations of previous
runs with different charges, equilibrated for at least 100 000
and 50 000 MC passes, respectively, where one pass is one
attempted move for each of the particles. Electrostatic potentials

Figure 1. Protonation equilibrium between imidazole and imidazolium.

7886 J. Phys. Chem. A, Vol. 102, No. 41, 1998 Hummer et al.



at solute atom positions and binding energies of the solute were
calculated after every pass using the Ewald method in simula-
tions extending over 200 000 MC passes each. Simulations
were performed for the uncharged, half-charged, and fully
charged Im(p) and Im(+) in their respective geometries. The
equilibrium simulations were performed with 16, 32, 64, 128,
256, and 512 water molecules to study finite size effects.

To complete the thermodynamic cycle and check for con-
sistency, two runs of slow growth thermodynamic integration
were used to calculate the free energy of converting the
geometry from the uncharged Im(p) to the uncharged Im(+)
conformation within 150 000 MC passes. Six runs of 200 000
MC passes were used to calculate the free energy of converting
the polar Im(p) into an Im(+) cation, starting from different
equilibrated configurations and averaging three charging and
three uncharging runs. The thermodynamic integrations were
carried out with 256 water molecules.

We will discuss the results of these calculations as they come
up in the theoretical narrative. However, before considering
more subtle issues, we can make a direct comparison of the
average electrostatic potential exerted by the solvent observed
during the simulation with the corresponding predictions of
dielectric models. Figure 2 shows that comparison for several
sets of radii in current use. Such a comparison illustrates the
basic issue of sensitivity of thermodynamic results to the radii
parameters and whether extant empirically adjusted radii are
transferable to slightly different cases.

3. Noteworthy Aspects of the Ewald Treatment of
Electrostatic Interactions

Viewed from an historical perspective, the most appropriate
treatment of electrostatic interactions for simulation calculations
has been a contentious issue. In this setting it is helpful to note
some broad, and nontechnical, characteristics of Ewald treat-
ments that might be typically overlooked. We preface these
observations by noting that simulation calculations treat finite

systems. Most commonly, periodic (or Born-von Karman)
boundary conditions47,48 are utilized for the exterior boundary
of the finite system considered. The theoretical issues engen-
dered by these boundary conditions with finite-ranged49,50 and
long-ranged interactions are reasonably well understood. Of
course, simulation calculations need not address issues of what
is happening outside the simulation cell. We note that it is
possible to compute the Ewald potential, and in more than one
way, without consideration of image charges outside the
simulation cell. So intuitive arguments based upon image
charges can be avoided completely.

It is convenient to express the Ewald electrostatic energy of
a system of partial chargesqiR at positionsr iR on moleculesi
as a sum of effective pair interactions and self terms,

wherer iRjâ ) r jâ - r iR. The Coulomb energyU was split into
intermolecular, intramolecular and self interaction contributions.
The Fourier representation ofæ(r ) reveals the periodicity of
this potential:51

Thek sum extends over the reciprocal lattice derived from the

TABLE 1: Coordinates x and y (in nm) and Chargesq (in
Elementary Charge Units e) of the Atoms in the Planar
Imidazole and Imidazolium from the Quantum Mechanical
Calculations of Topol et al.36

atom x y q σ ε

Imidazole
N1 0.000 0 0.110 5 -0.090 285 0.325 000 0.711 28
C2 -0.109 1 0.028 2 0.232 373 0.339 967 0.359 82
N3 -0.074 1 -0.098 3 -0.715 903 0.325 000 0.711 28
C4 0.063 6 -0.098 4 0.217 356 0.339 967 0.359 82
C5 0.112 0 0.029 8 -0.374 687 0.339 967 0.359 82
H1 -0.000 9 0.211 2 0.318 027 0.106 908 0.065 69
H2 -0.210 2 0.066 1 0.102 391 0.242 146 0.062 76
H4 0.119 7 -0.190 5 0.082 346 0.242 146 0.062 76
H5 0.211 9 0.070 0 0.228 383 0.242 146 0.062 76

Imidazolium
N1 0.000 0 0.112 8 -0.115 106 0.325 000 0.711 28
C2 -0.108 6 0.035 3 0.010 825 0.339 967 0.359 82
N3 -0.066 3 -0.091 2 -0.122 786 0.325 000 0.711 28
C4 0.071 9 -0.094 9 -0.139 642 0.339 967 0.359 82
C5 0.114 0 0.034 4 -0.122 097 0.339 967 0.359 82
H1 -0.001 8 0.214 1 0.398 875 0.106 908 0.065 69
H2 -0.211 0 0.068 6 0.230 198 0.242 146 0.062 76
H3 -0.127 4 -0.172 1 0.402 905 0.106 908 0.065 69
H4 0.127 3 -0.187 2 0.232 002 0.242 146 0.062 76
H5 0.213 1 0.076 6 0.224 826 0.242 146 0.062 76

a The Lennard-Jones-parametersσ andε (in nm and kJ/mol) are taken
from the AMBER force field.39 Lorentz-Berthelot mixing rules were
applied to combine the Lennard-Jones parameters of the solute atoms
with those of SPC/E water.40

Figure 2. Comparison of dielectric models (ordinate) with molecular
simulations (abscissa) for the induced electrostatic potentials due to
the solvent at the atom centers for Im(+) (upper panel) and Im(p) (lower
panel). Dielectric model results were obtained for several sets of radii
in current use: (diamonds)RC ) 0.267 nm,RN ) 0.231 nm;44 (large
circles)RH(N) ) 0.1160 nm,RH(C) ) 0.1710 nm,RC ) 0.230 nm,RN )
0.150 nm;36 (small circles)RH ) 0.1172 nm,RC ) 0.2096 nm,RN )
0.1738 nm;45 (crosses)RH ) 0.1172 nm,RC ) 0.1635 nm,RN ) 0.1738
nm.45 A boundary element method was used for the dielectric model
calculations,ε ) 77.4.46 Notice that a radii set that happens to be
qualitatively satisfactory for the cation (diamonds) can be significantly
less satisfactory for the slightly different circumstance of the neutral
polar molecule.
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real-space latticen of periodically replicated simulation boxes.
For a cubic lattice of lengthL ) V1/3, we haven ) L (i, j, k)
and k ) 2πL-1 (i, j, k), where i, j, and k are integers. For
numerical convenience,æ(r ) is partly transformed into real
space, which leads to its Ewald lattice sum representation:

η is a convergence parameter that is chosen to accelerate
numerical convergence. Note that the value ofæ(r ) is inde-
pendent ofη,52

and that the average potential in the box is zero,14,51,53,54

In the following, we will separate the Coulomb energyUel of
the solute from the total Coulomb energy eq 1. When the
system contains a solute with partial chargesqâ at positionsrâ,
its electrostatic interaction energy can be split into a solvent
term and self-interactions,

The first, second, and third sum are the direct interactions with
water, the interactions of charges on the solute with other solute
charges, and the self-interactions of solute charges, respectively.

Ewald Potential æ(r) Is the Solution of the Poisson
Equation That Is Periodic with the Fundamental Period of
the Simulation Cell.14,51,53,55 A periodic solution of the Poisson
equation requires that the surface integral of the electric field
normal to the surface of the simulation cell be zero. This means
that the material in the simulation cell must have zero net electric
charge. If the physical system of interest is nonneutral, a
uniform background distribution of charge is included to
neutralize the nonzero charge of the physical system.

Consider an elementary charge. Because the Ewald potential
is periodic, we can consider the Ewald electrostatic potential
implied by centering the simulation cell on this elementary
charge. By symmetry the Ewald normal electric field is zero
on the cell boundary. The Ewald potential can thus be
considered to be that of a cutoff on the cell boundarysthe cutoff
at the maximum distances achievableswith zero normal deriva-
tive analogous to a shifted-force correction.

Ewald Potential Pushes the Electrostatic Boundary out-
ward as far as Possible but Still Retains Smoothness on the
Boundary. The minimum image cutoff shares with the Ewald
treatment the property that the electrostatic potential is not cutoff
in any region of the simulation volume, the largest volume that
must be physically considered. However, as demonstrated
above, the Ewald potential is smooth on that boundary since it
is the periodic solution of the Poisson equation. This is an
important technical advantage that facilitates investigation of
system size dependence of computed properties, i.e., the
variation of system properties with variations of the cell
boundaries. In those cases where the physical system of interest

is nonneutral, it is a helpful point of view that the background
charge density is a simple device that permits smoothness of
the computed potential on the system boundary. We emphasize
that the effect of the neutralizing background charge disappears
as the thermodynamic limit is approached, in which the
background charge density disappears.

Reaction Field Potentials Are Ewald Potentials for Dif-
ferent Background Charges. Reaction field methods8-10,56are
computationally efficient alternatives to Ewald summation. The
effective potentials of the site-site reaction field (SSRF)
method9 and the generalized reaction field (GRF) method10 can
be viewed as Ewald potentials for a nonhomogeneous back-
ground charge. The SSRF and GRF potentials are the solutions
to the Poisson equation for a source charge and a compensating
background. The background charge densities in the SSRF and
GRF method are that of a homogeneous sphere and a radially
symmetric charge distribution centered around the source charge,
respectively. The SSRF and GRF method have a finite range
because of the radially symmetric background charge densities
that exactly compensate the source charge when the cutoff
distance is reached.

Comparison of Ewald Potentials from Simulation of
Water to Electrostatic Potentials in Isolated Water Droplets.
It is interesting to make some simple numerical comparisons
between the Ewald potentials that are experienced in simulation
of water with periodic boundary conditions to the corresponding
electrostatic potentials in water droplets. Such a comparison
is simplified if we locate a distinguished solute at the origin of
our Cartesian coordinate system. For a spherical Lennard-Jones
solute, Figure 3 shows a typical variation of the electrostatic
potential at the solute center with inclusion of the charge density
in progressively larger spherical volumes of radiusR around
the solute. Notice the substantial variation of the electrostatic
potential with inclusion of the solvation shells near the solute.
However, after about three shells the net electrostatic potential
oscillates about the Ewald asymptotic value before the ball
penetrates the physical interface of the droplet. Thereafter, the
net electrostatic potential displays the effects of the surface
polarization of the droplet as it makes a transition to the very
different value that characterizes the whole droplet. We observe
that the Ewald potential faithfully captures this interior potential
while avoiding detailed considerations of the droplet interface.

Figure 3. Electrostatic potential at the center of a neutral Lennard-
Jones solute in SPC water57 from simulations of a solute at the center
of a cluster with 1024 water molecules (dashed line) and with periodic
boundary conditions and Ewald summation (solid line). Shown is the
potential obtained by integrating the charge density around the solute
up to a distanceRusing 1/r (cluster) andæ(r ) (Ewald) for the Coulomb
interactions. The results are those of ref 58.
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Single Ion Hydration Free Energies Are Well-Defined
within Molecular Simulations . Electrostatic potentials can be
defined unambiguously as solutions of the Poisson equation with
specified charge densities and boundary conditions. Electro-
static potentials are computed throughout simulations of aqueous
solutions even if charge densities and boundary conditions may
not be specified explicitly. If the system of interest is
nonneutral, these issues deserve emphasis because single ion
free energies are typically not measured experimentally.

On a molecular scale, dependences on specifics of the
boundary conditions in the definition of single ion hydration
free energies can be avoided. This is accomplished by spheri-
cally integrating the electrostatic potential over the charge
density around a charge site up to a distance where that potential
saturates. Using Ewald interactions corresponds to such a
spherical integration.41,54 Figure 3 shows results for electrostatic
potentials obtained using two different choices for the boundary
conditionssa solute-water cluster and a periodic system. The
observed agreement is a nontrivial computer experimental
observation.

4. System Size Extrapolation

Computer simulations are performed for a finite system of
molecules. In most applications, the properties of the thermo-
dynamic-limit, infinite system are sought. In Coulombic
systems, pronounced finite-size effects are ubiquitous due to
the long range of the interactions. We can separate finite-size
effects in Coulombic systems into two categories: (1) those
caused purely by the long-range electrostatics independent of
the thermodynamic state, and (2) finite size effects that depend
on the thermodynamic state (temperature, pressure, etc.).

The electrostatic finite-size effects in the Ewald treatment of
Coulomb interactions arise from self-interactions and interac-
tions with the neutralizing background essential for nonneutral
systems under periodic boundary conditions. Electrostatic finite-
size effects can be treated exactly by including the second and
third sum in the electrostatic energyUel of the solute eq 6, which
account for self-interactions of the solute.13,14,53,59 For an ion
of chargeq, the resulting correction to the solvation chemical
potential is14,53

whereµsim is the chemical potential for charging the ion from
zero charge to net chargeq calculated from the Ewald
interactions with the solvent excluding self-interactions (i.e.,
including only the first sum in eq 6).µelec includes the self-
interactions, andê is the ionic self-term. For a cubic box of
lengthL, we haveê ) limrf0[æ(r ) - 1/|r |] ≈ -2.837297/L.
Electrostatic finite size corrections for polar molecules are
developed in ref 13. The corresponding free energy of changing
partial charges located at positionsrR on a molecule fromqR to
q′R is

where〈...〉 denotes a canonical average.∆µsim includes only
the energy difference corresponding to the first sum in eq 6,

excluding self-interactions. Note that in constant pressure
simulation with varying box volume,ê must also be averaged.

Thermodynamic finite-size effects on the other hand can only
be corrected approximately within a model. For instance, we
can use the difference between a truly infinite version of a model
and its finite periodic version to correct for thermodynamic finite
size effects,60-62 as schematically shown in Figure 4. For
spherical ions, a Born model63 and its periodic equivalent leads
to finite size corrections that depend on the dielectric constant
ε of the solvent, an effective Born radiusRB of the ion, and the
net chargeq of the ion:60,64

whereµthermis the chemical potential for charging that includes
the thermodynamic and electrostatic finite-size corrections.

Figure 5 illustrates the finite size effects for the free energies
of charging Im(p) and Im(+) after correction for Ewald self-
interactions. Free energies were calculated from sixth-order
integration formulas with corrected means and variances from
Table 2 that include the electrostatic14 but not the thermody-
namic finite-size correction. The free energy is plotted as a
function of 1/L3 whereL is the box length. We find that the
free energy of charging the polar Im(p) is independent of the
system size within the statistical errors of about 1 kJ/mol forN
) 16 to N ) 512 water molecules. However, the free energy
of charging the Im(+) cation shows a system size dependence
proportional to 1/L3, as would be expected from our finite size
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2
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Figure 4. Schematic representation of the thermodynamic finite-size
correction. The thermodynamic finite-size correction is the difference
between an infinite Born model and a Born model under periodic
boundary conditions. A spherical ion of chargeq and radiusRB is
embedded in a medium with a dielectric constantε inside the simulation
box. In addition, the box is filled with the neutralizing background
charge. Periodic boundary conditions are applied. The corresponding
electrostatic potential is determined from the Poisson equation with
appropriate boundary conditions on the box boundary and ion surface.58

Figure 5. Finite-size dependence of the free energies of charging
imidazole and imidazolium (filled circles and open squares on the right-
and left-hand scale, respectively), as a function of the inverse volume
of the simulation box, 1/L3. The top scale gives the number of water
molecules.

µtherm≈ µelec+ 1
2
q2[-ê

ε
+

4π(ε - 1)RB
2

3εL3 ] (9)
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analysis.60 Rather than using a more realistic shape of the
molecule in the dielectric model of ref 60, we fit the observed
free energies to the spherical Born model eq 9 with an effective
radiusRB ) 0.207 nm and an infinite dielectric constant which
reproduces the data over the whole range of system sizes of 16
e N e 512 water molecules.

To further illustrate the power of the finite-size corrections,
Figure 6 shows the probability distributions of electrostatic
interaction energiesUel of the imidazolium cation Im(+) with
the N water molecules, the first term of eq 6. Also shown in
Figure 6 are the corresponding Gaussian distributions, which
nicely reproduce the calculated histograms ofUel. However,
we observe a strong system size dependence: small systems
have narrower distributions ofUel with less negative averages
compared to large systems. When we apply the electrostatic
and thermodynamic finite size corrections for the mean and
average, the Gaussian distributions “collapse” to a single
distribution corresponding to the limit of an infinite system size.
We note that the finite-size correction is large: forN ) 16
water molecules, the averageUel changes by about-370 kJ/
mol (150kBT).

5. Perturbation Theory

A fundamental view of the thermodynamics due to electro-
static interactions may be obtained from consideration of the
distribution p(u; λ ) 0) of electrostatic energiesu in the
reference charge stateλ ) 0. The part of the chemical potential

due to electrostatic interactions∆µ(λ), the thermodynamic
parameter sought, is then expressed by the fundamental result

Here,â-1 ) kBT is Boltzmann’s constant times the temperature
and〈...〉λ)0 denotes a thermal average with the solute in reference
stateλ ) 0. This formula requires the consideration of the
electrostatic potential even though the electrostatic potential of
a phase is an operationally subtle property.58,65 Despite that
subtlety, the potential sought is conceptually well-defined as
the solution of Poisson’s equation with specified charge density
and boundary conditions.14,53,58,59,66

Direct use of eq 10 can present difficulties. Thoughp(u) is
often substantially Gaussian, the fundamental formula eq 10 is
sensitive to the tails ofp(u). That limits the applicability of eq
10 for calculations of even small changes in the charge stateλ.
In addition, the simple estimator ln〈e-âλu〉λ)0 ≈ ln[M-1∑i)1

M

e-âλui] from M energiesui observed in a simulation is biased
and large sample sizesM are required for this bias to be
negligible.67

Perturbation or cumulant expansions provide a technique to
analyze these distributions.12-16,68-73 A cumulant expansion74

with respect toλ of eq 10 provides

This defines the cumulantsCn of ordern ) 0, 1, 2 as

We interpret eq 11 as a Taylor expansion inλ but augment
∆µ(λ) to include the self-contribution (λq)2ê/2, whereê vanishes
in the thermodynamic limit but accounts for finite-size effects
as discussed above. Then for the charging of an ion from a
neutral reference condition we have

This result should be compared to the Born63 formula for the

TABLE 2: Averages C1 (in kJ/mol) and Variances C2 [in (kJ/mol) 2] of the Electrostatic Energy of Imidazole and Imidazolium
in the Uncharged, Half-Charged, and Fully Charged States. Finite-Size Corrections Have Been Applied

uncharged half-charged charged

N ave var ave var ave var

Imidazole
16 1.2( 0.5 209.6( 7 -56.7( 1.3 436.8( 25 -156.9( 1.5 495.6( 32
32 0.5( 1.0 224.4( 7 -57.( 1.6 427.4( 22 -158.7( 1.5 456.4( 26
64 1.8( 0.6 208.2( 7 -58.8( 2.0 510.0( 25 -155.5( 1.5 480.9( 15

128 1.0( 0.7 205.1( 9 -59.2( 1.6 429.5( 16 -156.1( 1.8 491.9( 20
256 1.3( 0.5 204.8( 7 -59.2( 1.6 429.1( 22 -152.9( 2.0 473.4( 24
512 1.1( 0.5 209.6( 9 -57.7( 1.3 410.8( 17 -155.9( 2.0 539.2( 30

Imidazolium
16 33.4( 1.3 1326.7( 10 -226.5( 1.0 1305.5( 7 -500.8( 1.0 1391.0( 14
32 33.9( 1.0 1267.6( 12 -215.0( 0.9 1267.0( 10 -483.4( 2.0 1375.0( 20
64 35.9( 1.1 1234.0( 12 -208.7( 1.3 1252.4( 13 -473.9( 1.5 1307.9( 18

128 34.9( 1.0 1226.0( 14 -203.5( 0.9 1215.9( 17 -469.1( 1.3 1291.2( 22
256 34.1( 1.1 1222.5( 22 -204.4( 1.2 1256.3( 24 -465.2( 1.5 1330.2( 33
512 35.9( 1.5 1248.8( 18 -201.2( 1.8 1248.3( 26 -461.7( 1.5 1305.3( 25

Figure 6. Finite-size correction of the probability densitiesp(Uel) of
the electrostatic energiesUel of Im(+). The uncorrectedUel histograms
are shown with symbols, together with corresponding Gaussian
distributions. After correction for electrostatic and thermodynamic finite-
size effects, the corresponding Gaussian distributions “collapse” and
agree closely for all system sizes of 16e N e 512 water molecules.

e-â∆µ(λ) ) 〈e-âλu〉λ)0 ) ∫du p(u; λ ) 0) e-âλu (10)

〈exp (-âλu)〉λ)0 ) exp[∑
n)0

∞

(-âλ)n
Cn

n! ] (11)

C0 ) 0 (12a)

C1 ) 〈u〉λ)0 (12b)

C2 ) 〈(u - 〈u〉λ)0)
2〉λ)0 (12c)

∆µ(λ) ) λq〈u〉λ)0 -
(λq)2

2
[â〈(u - 〈u〉λ)0)

2〉λ)0 - ê] + ...
(13)
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hydration free energy due to electrostatic interactions of a
spherical ion of radiusR and chargeλq:

whereε is the dielectric constant of the solvent. The matching
of the second-order terms between the cumulant expansion and
the continuum formula provides a determination of the radius
R of a spherical ion. The distributionsp(u; λ ) 0) required to
evaluate the cumulant averages involve the nonelectrostatic
interactionsλ ) 0 between solvent molecules and the solute.
The indicated average thus generally depends upon full char-
acterization of the solvent. Note that the continuum model
neglects the molecular contribution linear inλ. This linear term
contributes to the asymmetry between anion and cation solva-
tion, making the solvation of anions more favorable for a given
ion size.14

In principle, higher order cumulants could be used to obtain
information about the other Taylor coefficients. However, as
was observed by Smith and van Gunsteren,69 higher-order
cumulants are increasingly difficult to extract from computer
simulations of limited duration. Though direct extension of
perturbation theory beyond fourth order has been impractical,
interpolative approximations polynomial inλ have been more
successful. For the charging of water and ions, polynomials of
order six and higher were necessary to account for the simulation
data.13,14,71 Thus, perturbation theory was found to be unsat-
isfactory in such cases. For atomic14 and molecular ions,24 a
kink is typically observed for d∆µ(λ)/dλ as a function of charge
λ at modest values of this parameter when the solvation shell
changes from a cationic to an anionic structure. Additional
nonlinearities were observed at high values of the ionic charge
λ.17,75

Table 2 contains the averages and variances corrected for
electrostatic finite-size effects of the electrostatic energies of
Im(p) and Im(+) for system sizes between 16 and 512 water
molecules. Errors of one standard deviation of the mean were
estimated by plotting the block error as a function of the number
of blocks. The estimated error reaches a plateau when block
values are uncorrelated. From the averages and variances, we
can calculate the chemical potentials of charging using integra-
tion formulas (ijk) exact to various orders that involvei, j, and
k derivatives of the free energy with respect to the coupling
parameter at the uncharged, half-charged, and fully charged
state:71

where the cumulantsC1 andC2 contain the electrostatic finite-
size corrections. Formulas involving higher cumulants and
different nodesλi are discussed in ref 71. The integration

formulas eqs 15a-e are exact to order 2, 2, 4, 4, and 6 in a
perturbation expansion, respectively.70,71 Figure 7 shows the
free energy difference between Im(+) and Im(p) as a function
of the integration order for the 512 water molecule system. We
find that as the order of the integration formula increases, the
free energy difference converges, with the sixth order formula
bracketed by the two fourth-order formulas. The statistical error
of the free energy difference is about 1.5 kJ/mol. Notice that
the discrepancy between the two second-order results of Figure
7 is significant on the scale of the statistical uncertainties. This
emphasizes that the charging free energy is not a quadratic
function of the coupling parameter. Note that the centered
second-order formula76 has a smaller systematic error.

Figure 8 illustrates the complete four-node thermodynamic
cycle, whereλ is a coupling parameter changing the partial
charges on the molecule linearly from state zero to one. The
four nodes of the cycle are the uncharged and charged imidazole
and imidazolium. We find that the free energies of charging
and conformational changes are consistent within the statistical
errors. Interestingly, the free energy of charging the polar Im-
(p) to the Im(+) cation has a maximum for the linear charging
path chosen here. This increase reflects the linear terms of eq
13, i.e., increasing the net charge on the imidazole initially costs
free energy.

Dielectric continuum models predict a quadratic proportional-
ity of the free energy of charging on the linear coupling

∆µB(λ) ) -
(λq)2

2R (ε - 1
ε ) (14)

∆µ(010)≈ C1(λ ) 0.5) (15a)

∆µ(101)≈ 1
2
[C1(λ ) 0) + C1(λ ) 1)] (15b)

∆µ(111)≈ 1
6
[C1(λ ) 0) + 4C1(λ ) 0.5)+ C1(λ ) 1)]

(15c)

∆µ(202)≈ ∆µ(101)- â
12

[C2(λ ) 0) - C2(λ ) 1)] (15d)

∆µ(212)≈ 1
30

[7C1(λ ) 0) + 16C1(λ ) 0.5)+

7C1(λ ) 1)] - â
60

[C2(λ ) 0) - C2(λ ) 1)] (15e)

Figure 7. Free energy of charging the polar imidazole Im(p) to the
imidazolium cation Im(+) as a function of the order of the integration
formula. (ijk) indicates the numberi, j, andk of derivatives used at the
uncharged, half-charged, and fully charged state.71

Figure 8. Thermodynamic cycle with the free energies connecting
the four states of the uncharged and charged imidazole and imidazolium
as a function of a linear coupling parameter. Shown are results for
charging of imidazolium (solid line), uncharging of imidazole (long
dashed line), conversion of imidazole to imidazolium (dotted line) and
conversion of uncharged imidazole to uncharged imidazolium (short
dashed line).
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parameterλ. In a molecular theory, such a quadratic charging
free energy arises when the probability density of electrostatic
potential fluctuations is Gaussian. Second-order perturbation
theory would then be exact. Figure 9 compares second-order
perturbation theory with the reference sixth-order free energy
polynomial calculated from the averages and variances in Table
2. We find that the perturbation expansions about the charged
state (λ ) 1) are accurate over a relatively wide range fromλ
) 1 to almostλ ) 0.2. The expansion about the uncharged
stateλ ) 0 on the other hand breaks down rapidly at aboutλ
) 0.2.

6. Non-Gaussian Fluctuations

Multistate Gaussian Models. One idea for improvement
of dielectric models is based upon a physical description of the
structure of the first hydration shell. That first hydration shell
can be viewed from the perspective of Stillinger-Weber
inherent structures or substates.77 These are potential energy
basins of attraction for steepest descent energy minimization.
If those first hydration shell molecules stayed always in one
basin, then a Gaussian model for thermal fluctuations would
be reasonable. Empirical radii parameters reflect the charac-
teristics of that single basin. However, changing conditions may
result in reweighting of slightly accessible basins or the opening
of new basins. The Gaussian or dielectric models may fail to
describe these possibilities well. This picture is physically better
defined than the commonly nonspecific discussions of electro-
striction and dielectric saturation.

A corresponding “multistate Gaussian model” was developed
in ref 21. Attention is directed to the thermal probability

distribution of electrostatic potential energies of the solute.
Rather than approximating this distribution as a single Gaussian
distribution, perhaps with perturbative corrections, we discrimi-
nate hydration structure on the basis of simple parameters
diagnostic of hydration substates. We assume that the prob-
ability distribution of electrostatic potential energies is Gaussian
for each substate. Therefore, the full distribution is a superposi-
tion of Gaussian distributions for the various substates.

Thus we attempt to represent the observed complicating
features ofp(u) by a combination of simpler states:

with weightswn g 0, ∑n wn ) 1 and normalized densitiespn(u)
g 0, ∫ du pn(u) ) 1. We will seekpn(u)’s of Gaussian form,
representing the overall system as a linear combination of
Gaussian subsystems, each showing linear response to electro-
static interactions. Representingp(u) by a sum of Gaussian
densities can give nontrivial results for the chemical potential,
as can be seen by substituting eq 16 into eq 10,

wheremn andσn
2 are the mean and variance of the Gaussian

pn, respectively.
The non-Gaussian fluctuations of the electrostatic potential

in liquid water are associated with changes in the conformations
of protons that make hydrogen bonds to the solute. If those
fluctuations could be tempered, a Gaussian model might become
more accurate. Thus, suitable substate diagnostic parameters
are the number of hydrogen bonds made to the solute.

Explicit calculations have shown that this approach eliminates
most of the detailed numerical inaccuracies of the Gaussian
fluctuation models for hydration of a water molecule in liquid
water.21 The markedly non-Gaussianp(u) was accurately
represented as the sum of Gaussian distributions implied by this
definition of a hydration substate. We foundwn > 10-3 for 1
e n e 6 with 3.64 being the average number of neighbors and
n ) 4 the most probable number of neighbors. The calculated
change of the chemical potential upon change of the charge
state of a solute water molecule is correct to within 5%. This
is a remarkable result because∆µ(λ) is nonquadratic, requiring
an eighth-order polynomial to fit the simulation data for
chemical-potential derivatives.13,14,71 This shows that sufficient
information can be extracted from the simulation to describe
the distributionp(u) helpfully and that such an approach can
be successful even for perturbations involving changes of the
chemical potential as large as 14kBT.

Similar behavior can be anticipated for hydration of other
neutral, polar solutes such as the imidazole example studied
here. Figure 9 (inset) shows the results of the multistate
Gaussian model applied to charging and uncharging the polar
imidazole Im(p). Fluctuation data were collected from a
simulation of the uncharged and charged Im(p) inN ) 128 water
molecules, extending over 106 MC passes to allow for error
estimates. Instead of determining the overall mean and variance
of the electrostatic potential for a second-order perturbation
expansion, we calculate the means and variances for several
Gaussian distributions from structures sorted according to the
number of hydrogen bonds. Inspection of the radial distribution
functions of water oxygen and hydrogen around imidazole sites
shows one strong hydrogen bond donor, H1, and one acceptor,
N3. As a criterion for the formation of a water-imidazole

Figure 9. Comparison of the second-order perturbation expansion
(dashed lines) with the reference free energies of charging Im(p) to
Im(+) (top), uncharged Im(+) to the cationic Im(+) (middle), and
uncharged Im(p) to the polar Im(p) (bottom). Also included as an inset
in the bottom panel is a comparison with multistate Gaussian models
(symbols and dot-dash lines) shown with estimated statistical errors.
The multistate expansions about the charged and uncharged states are
shown with open squares and filled circles, respectively.

p(u) ) ∑
n

wnpn(u) (16)

∆µ(λ) ) -kBT ln∑
n

wne
-âλmn+â2λ2σn

2/2 (17)
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hydrogen bond, we used that the distance between the acceptor
(nitrogen N3 or water oxygen) and the donor hydrogen has to
be smaller than 0.23 nm. We can then sort structures according
to the numbers of hydrogen bonds accepted and donated by
the solute. With this simple criterion, we find that six and two
Gaussian distributions contribute to the expansions about the
charged and uncharged state of Im(p), respectively. This
multistate Gaussian model greatly improves the quality of the
expansions, both about the charged and uncharged state. The
reference free energy is now within the statistical errors of the
two multistate Gaussian models over the whole range 0e λ e
1.

Quasi-Chemical Theories. Those difficult anionic cases
mentioned above can be attacked more directly. The local
neighborhood is again used to discriminate structural possibili-
ties. But, in addition, the consequences for the hydration free
energy of the molecular interactions within that neighborhood
are treated fully. This reserves the longer ranged interactions
for simple approximations, e.g., with Gaussian models.

These theoretical developments arose from recent molecular
calculations23 that suggested how a chemical perspective can
be helpful in computing thermodynamic properties of water and
aqueous solutions. That calculation used electronic structure
results on the Fe(H2O)63+ cluster and simple, physical estimates
of further solvation effects. The results were organized ac-
cording to the pattern of a simple chemical reaction and a
surprisingly accurate evaluation of the hydration free energy
was obtained. Despite this recent motivation, the theories
developed are akin to good approximations of historical and
pedagogical importance in the areas of cooperative phenomena
and phase transitions.78 In those areas, similar approximations
are called Guggenheim, quasi-chemical, or Bethe approxima-
tions.

These quasi-chemical theories22 are constructed by consider-
ing a geometric volume fixed on the solute molecule and
performing a calculation analogous to the evaluation of a grand
canonical partition function for that volume. All the possibilities
for occupancy of that volume by solvent or other solution species
must be considered eventually. The final result can be described
by reference to simple patterns of chemical equilibria such as

The solute of interest is denoted here generically as Xq-; a star-
type cluster of that solute withn water (W) molecules is
considered as the product. For such a cluster, call it an
M-cluster, we could calculate the equilibrium ratioKM for a
dilute gas phase. We adopt the convention thatKM ) 1 for the
n ) 0 case that zero ligands are involved. Note thatKMFW

n is
dimensionless and this observation resolves standard state issues.
The factors denoted by〈exp{-â∆u}〉0,C, where C indicates
either a water molecule or the M-cluster, carry information about
the solvation free energy of the species involved. For the species
other than the cluster this is the familiar Widom factor. For
the cluster, this factor requires a slight additional restriction. It
is the average of the Boltzmann factor for cluster-solution
interactions over the thermal motion of the cluster and solution
under the condition that the only interactions between these
subsystems rigidly exclude additional solvent molecules from
the cluster volume for the complex. This restriction enforces a
constraint required to preserve simple enumerations that underlie
these results. The theoretical structure is designed so that simple
approximations such as dielectric models might be used for the
factors〈exp{-â∆u}〉0,C. But more detailed techniques might
be applied to the calculation ofKM. Finally, we compile

Thus, thisK̃M is built on the pattern of the chemical equilibrium
eq 18 but without a “solvation factor” for the reactant solute
indicated on the left.

Now consider all possibilities for clusters. A thermodynamic
implication of this information is

p0 is the probability that the clustering volume would be
observed to beemptyin the equilibrium solution; thus,-kT ln
p0 is the free energy for formation of a cavity for the clustering
volume in the solution. The sum is over all clusters with zero
or more ligands. The product of the densities involved with
each term includes a density factor for each ligand. This
formula makes the conventional separation between the con-
tributions of intermolecular interactions and the noninteraction
(ideal) terms;qXq- is the partition function of the bare solute in
the absence of interactions with any other species andFXq- is
the density of the solute. As an example, for an atomic ion
such as the chloride ion Cl- we would putqXq- ) V/Λ3 with V
the volume of the system andΛ the thermal deBroglie
wavelength of the chloride ion. This formula becomes ap-
proximate when approximate models are adopted forp0, for KM,
and for the solvation factors. Those quantities depend on
definition of the clustering volume. But, since the physical
problem is independent of those parameters, the theory should
be insensitive to them.

The motivation for this approach is that a substantial but
intricate part of the free energy sought is to be found inKM.
The number of possibilities for ligand populations will be small
for molecular scale clustering volumes. So a limited number
of terms must be considered. Because the clusters will be small
systems, elaborate computational methods can be applied to the
prediction of theKM, including current electronic structure
techniques. With the complicated chemical interactions sepa-
rated for individual treatment the remaining hydration contribu-
tions should be simpler and the required theories better
controlled.

Equation 20 should be compared with eq 17. One difference
is that eq 20 attempts to provide the whole hydration free energy,
not just the part due to electrostatic interactions. That explains
the presence ofp0 in eq 20. Beyond that, the structures of these
formulas are similar. The presence of more than one term in
the sum of eq 20 is an expression of an entropy contribution
associated with the possibilities for different ligand populations.
Finally, the complete calculation of theKM includes non-
Gaussian statistical possibilities not anticipated by eq 17.

7. Conclusions

Recent calculations of the hydration free energy due to
electrostatic interactions between charged and polar solutes in
water have obtained high accuracy results for the simple
molecular models that are the basis of most simulation calcula-
tions.13,14,21,62,79,80 An important step in securing those high
accuracy results has been a careful consideration of treatment
of long-ranged interactions. That work suggests thatthe Ewald
method is an easy way to get correct hydration free energies
from molecular calculations, that is, to achieve well-character-
ized results appropriate to the thermodynamic limit in which
the system size tends to infinity for given densities and
temperature. Additionally, it suggests that molecular simulations

K̃M ≡ KM

〈exp{-â∆u}〉0,M

[〈exp{-â∆u}〉0,W]n
(19)

µXq- ) kT ln[FXq-V/qXq-] - kT ln[p0∑
M

K̃MFW
n] (20)

Xq- + nH2O h X(H2O)n
q- (18)
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with Ewald potentials and periodic boundary conditions can have
efficiencies comparable to rougher approximations that are often
employed to compute hydration free energies for molecularly
well-defined problems.81 And furthermore, this has produced
a simple, effective, and clear understanding of how to extrapolate
electrostatic hydration free energies to the thermodynamic limit;
an accurate evaluation of the hydration free energies of
imidazole and imidazolium can be obtained with as few as 16
water molecules included in the simulation.

These high accuracy results for well-defined models permitted
careful testing of simple theories of electrostatic hydration free
energies. The simplest theories, dielectric continuum models,
have been found to be rough despite the fact that they can always
be adjusted to reproduce an empirical answer given a priori.
Such a conclusion has surely been widely expected. However,
the testing has led to new theories, the multistate Gaussian and
quasi-chemical theories, that should permit more revealing
molecular scale calculations. The quasi-chemical approaches
seem to provide the most natural way to utilize current electronic
structure packages to study electronic structure issues for
solution species. This should be particularly helpful for
treatment of basic, molecular anions that are ubiquitous in
aqueous solution chemistry.

Physical conclusions more specifically are that the most
prominent failings of the simplest theories are associated with
solvent proton conformations that lead to non-Gaussian fluctua-
tions of electrostatic potentials. Thus, the most favorable cases
for the second-order perturbation theories are monoatomic
positive ions. In such cases, oxygen-hydrogen bonds are
oriented away from the ion, placing those protons as far out as
possible. Neutral, polar molecules that may form specific
hydrogen bonds with the solvent are more difficult for these
theories, though the hydration free energies sought are smaller
in magnitude. Negative molecular ions are expected to offer
further complications because now the problematic proton
motions occur close to the solute and the hydration effects will
be larger for anionic species.
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